VMT Computation Procedures (DRAFT)

Background and Introduction
SACSIM19 simulates several key types of travel by residents (as opposed to commercial trips like freight, deliveries, etc.):

- Trips by SACOG residents to destinations within the SACOG region. These are known as internal-internal, or II trips. These trips are modeled by the DAYSIM submodel.
- Trips by SACOG residents to destinations outside the SACOG region, known as internal-external, or IX trips.
- Trips by non-SACOG residents to destinations in the SACOG region, known as external-internal, or XI trips.
- IX and XI trips are both modeled by the IXXI submodel.

All the above trip types generate VMT. Important to note is that the model does not currently predict VMT generated outside the region, e.g., for IX trips, the model only counts the VMT generated from the trip origin in the region until the region’s border. Methodology for estimating VMT for portions of trips that are outside the SACOG region is under development and will be added to this document when available.

This document describes the technical procedures to compute household generated or residential VMT (Residential VMT is used in below paragraphs) and Work related VMT in the following order:

- Compute internal-internal, or II, VMT based on trip table from DAYSIM
- Compute internal-external and external-internal, or IXXI, VMT based on vehicle trip matrix from IXXI sub-model
- Tally residential VMT to parcels
 - Tally internal-internal residential VMT to parcels
 - Tally internal-external residential VMT to parcels
 - Compute household generated VMT per capita
- Tally internal-internal work related VMT to job location parcels
 - Compute Work-related VMT per job

Cube Voyager programming scripts used are included as appendices at the end for references. Other software and programs are also needed to perform calculations and joining tables.

Step 1 Compute internal-internal VMT based on trip table from DAYSIM
When the SACSIM model run completes, it produces the _trips.tsv file, which is a table of all internal-internal trips. However, because the trip distance in the original table is estimated based on the congested speed prior to the last global iteration, the user must run a Cube
Voyage script, provided in Appendix A, to estimate the distance based on the final iteration network congestion. This script attaches trip distances to each trip by creating a temporary O-D distance skim based on the final loaded model network, then tagging the skim distance values to each trip based on the trip’s origin and destination TAZs.

The output of this supplementary Cube script is a CSV file, “_trip_1_1.csv”, which has the same table as _trips.tsv but with the following attributes added to each trip:

- timeau - updated travel time by auto
- distau - updated trip distance by auto
- distcong - congested distance, and

Table 1 describes the fields in the “_trips_1_1.csv” output CSV file. Below is the equation to compute each trip’s VMT. Factors are applied to the trip distance based on trip MODE.

\[
\text{VMT} = \begin{cases}
\text{distau} & \text{if MODE = 3 (Drive Alone)} \\
\text{distau} \times 0.5 & \text{if MODE = 4 (Shared Drive 2)} \\
\text{distau} \times 0.3 & \text{if MODE = 5 (Shared Drive 3 or more)}
\end{cases}
\]

<p>	Table 1 – Person Trip Table Output (_trip_1_1.csv) Variables and Descriptions
Variables in the trip table direct from DAYSIM	Variable
id	Unique Trip ID
tour_id	Unique Tour ID
hhno	Unique Household ID
pno	Person ID in the household
day	Tour ID for the person
half	1-first half tour, 2-secon half
tseg	Trip sequence number in the half tour
tsvid	
<table>
<thead>
<tr>
<th>opurp</th>
<th>0 - none/home</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 - work</td>
</tr>
<tr>
<td></td>
<td>2 - school</td>
</tr>
<tr>
<td></td>
<td>3 - escort</td>
</tr>
<tr>
<td></td>
<td>4 - pers.bus</td>
</tr>
<tr>
<td></td>
<td>5 - shop</td>
</tr>
<tr>
<td></td>
<td>6 - meal</td>
</tr>
<tr>
<td></td>
<td>7 - social</td>
</tr>
<tr>
<td></td>
<td>8 - recreational (combined with social)</td>
</tr>
<tr>
<td></td>
<td>9 - medical (combined with pers.bus.)</td>
</tr>
<tr>
<td></td>
<td>10 - change mode inserted purpose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dpurp</th>
<th>0 - none/home</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 - work</td>
</tr>
<tr>
<td></td>
<td>2 - school</td>
</tr>
<tr>
<td></td>
<td>3 - escort</td>
</tr>
<tr>
<td></td>
<td>4 - pers.bus</td>
</tr>
<tr>
<td></td>
<td>5 - shop</td>
</tr>
<tr>
<td></td>
<td>6 - meal</td>
</tr>
<tr>
<td></td>
<td>7 - social</td>
</tr>
<tr>
<td></td>
<td>8 - recreational (combined with social)</td>
</tr>
<tr>
<td></td>
<td>9 - medical (combined with pers.bus.)</td>
</tr>
<tr>
<td></td>
<td>10 - change mode inserted purpose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>oadtyp</th>
<th>1 - Home</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 - Usual workplace</td>
</tr>
<tr>
<td></td>
<td>3 - Usual School</td>
</tr>
<tr>
<td></td>
<td>4 - Other</td>
</tr>
<tr>
<td></td>
<td>5 - Missing</td>
</tr>
<tr>
<td></td>
<td>6 - Change mode inserted location</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dadtyp</th>
<th>1 - Home</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 - Usual workplace</td>
</tr>
<tr>
<td></td>
<td>3 - Usual School</td>
</tr>
<tr>
<td></td>
<td>4 - Other</td>
</tr>
<tr>
<td></td>
<td>5 - Missing</td>
</tr>
<tr>
<td></td>
<td>6 - Change mode inserted location</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>opcl</th>
<th>Origin Parcel</th>
</tr>
</thead>
<tbody>
<tr>
<td>otaz</td>
<td>Origin TAZ</td>
</tr>
<tr>
<td>dpcl</td>
<td>Destination Parcel</td>
</tr>
<tr>
<td>dtaz</td>
<td>Destination TAZ</td>
</tr>
</tbody>
</table>
| mode | 1 - walk
| | 2 - bike
| | 3 - sov
| | 4 - hov2
| | 5 - hov3+
| | 6 - transit
| | 8 - school bus
| | 9 - other |
| pathype | 0 - none
| | 1 - full network
| | 2 - no-toll network
| | 3 - localbus
| | 4 - light rail
| | 5 - premium bus
| | 6 - commuter rail
| | 7 - ferry |
| dorp | 1 - Driver
| | 2 - Passenger
| | 3 - N/A
| | 9 - Missing |
| deptm | Departure Time - minutes from middle night |
| arrtm | Arrival Time - minutes from middle night |
| endacttm | Activity End Time - minutes from middle night |
| travtime | Travel Time – minutes |
| travcost | Travel Cost – minutes |
| travdist | Travel Distance – mile |
| vot | Value of Time |
| trexpfac | trip expansion factor |
| timeau | updated travel time by auto |
| distau | updated travel distance by auto |
| distcong | congested distance |
| VMT | IF(mode=3,distau,IF(mode=4,distau*0.5,IF(mode=5,distau*0.3),distau*0.3)) |

Step 2 Compute internal-external VMT based on vehicle trip matrix from IXXI sub-model

After running the Cube script in Appendix A to add travel times and distances to the output trip table, a Cube Voyager script, shown in Appendix B, is run to compute VMT and other variables for both IXXI and commercial trips. Please note that the script in Appendix A must be executed prior the script in Appendix B because the temporary skims created from the Appendix A script
are used. Table 2 shows the fields for the output created by the IXXI VMT Cube script in Appendix B.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Traffic Analysis Zone (TAZ)</td>
<td>Gateway zones = 1-30, internal zones = 31-1533</td>
</tr>
<tr>
<td>IX_VT_I</td>
<td>Vehicle trips originating at zone I</td>
<td></td>
</tr>
<tr>
<td>IX_VT_J</td>
<td>Vehicle trips ending at zone I</td>
<td></td>
</tr>
<tr>
<td>IX_VHT_I</td>
<td>Vechicle Hours originating at zone I</td>
<td></td>
</tr>
<tr>
<td>IX_VHT_J</td>
<td>Vechicle Hours ending at zone I</td>
<td></td>
</tr>
<tr>
<td>IX_VMT_I</td>
<td>VMT originating at zone I</td>
<td></td>
</tr>
<tr>
<td>IX_VMT_J</td>
<td>VMT ending at zone I</td>
<td></td>
</tr>
<tr>
<td>IX_CVMT_I</td>
<td>Commercial VMT originating at zone I</td>
<td></td>
</tr>
<tr>
<td>IX_CVMT_J</td>
<td>Commercial VMT ending at zone I</td>
<td></td>
</tr>
<tr>
<td>HHS</td>
<td>Households in zone I</td>
<td></td>
</tr>
<tr>
<td>EMPTOT</td>
<td>Jobs in zone I</td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>Jobs in Food sector in zone I</td>
<td></td>
</tr>
<tr>
<td>RET</td>
<td>Retail jobs in zone I</td>
<td></td>
</tr>
<tr>
<td>SVC</td>
<td>Service Jobs in zone I</td>
<td></td>
</tr>
<tr>
<td>IX_VMT_RES</td>
<td>(internal-external VMT made by SACOG residents)</td>
<td>= (IX_VMT_I+IX_VMT_J) * (HHS / (1 + HHS + 1.1*(EMPTOT – FOOD - RET -0.25* SVC)))</td>
</tr>
</tbody>
</table>

Step 3 Tally residential VMT to parcels
This section will cover how to:

- Tally internal-internal residential VMT to parcels
- Tally internal-external residential VMT to parcels
- Compute residential VMT per capita

3.1 Tally Internal-Internal VMT by Residence Parcels
A. Join _household.tsv (direct output from DAYSIM) to _trip_1_1.csv using the HHNO field. The resulting table will be for individual trips and have two key variables:
 - Vmt – the trip’s VMT, from _trip_1_1.csv and calculated in Step 1
 - Hhparcel – the parcel on which the household is located. This value comes from the _household.tsv table.
B. From the joined table, calculate the sum of total VMT for each parcel.
C. Summarize VMT by HHPARCEL in _household.tsv. Variable HHPARCEL is the unique identifier for the traveler’s residence parcel. The ID for this household HHNO is 17. The parcel ID HHPARCEL is 101013667 as Table 2 shows. The total VMT from this household on parcel 101013667 is 3.04 miles. The total residential VMT on this parcel should also include the VMT made by all residents on this parcel regardless the destinations.

Table 3 An Example of Household Table _household.tsv

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sample Household</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hhno</td>
<td>17</td>
<td>Household id</td>
</tr>
<tr>
<td>fraction_with_jobs_outside</td>
<td>0.028</td>
<td>Residence zone worker IX fraction</td>
</tr>
<tr>
<td>Hhsiz</td>
<td>1</td>
<td>Household size</td>
</tr>
<tr>
<td>Hhvehs</td>
<td>1</td>
<td>Vehicles available</td>
</tr>
<tr>
<td>Hhwkrs</td>
<td>1</td>
<td>Household workers</td>
</tr>
<tr>
<td>Hhftw</td>
<td>1</td>
<td>HH full time workers (type 1)</td>
</tr>
<tr>
<td>Hhptw</td>
<td>0</td>
<td>HH part time workers (type 2)</td>
</tr>
<tr>
<td>Hhret</td>
<td>0</td>
<td>HH retired adults (type 3)</td>
</tr>
<tr>
<td>Hload</td>
<td>0</td>
<td>HH other adults (type 4)</td>
</tr>
<tr>
<td>Hhuni</td>
<td>0</td>
<td>HH college students (type 5)</td>
</tr>
<tr>
<td>Hhhsc</td>
<td>0</td>
<td>HH high school students (type 6)</td>
</tr>
<tr>
<td>hh515</td>
<td>0</td>
<td>HH kids age 5-15 (type 7)</td>
</tr>
<tr>
<td>hhcu5</td>
<td>0</td>
<td>HH kids age 0-4 (type 8)</td>
</tr>
<tr>
<td>Hhincome</td>
<td>11722</td>
<td>Household income ($)</td>
</tr>
<tr>
<td>Howrnrent</td>
<td>3</td>
<td>Household own or rent</td>
</tr>
<tr>
<td>Hrestype</td>
<td>3</td>
<td>Household residence type</td>
</tr>
<tr>
<td>Hhparcel</td>
<td>101013667</td>
<td>Residence parcel id</td>
</tr>
<tr>
<td>zone_id</td>
<td>1241</td>
<td>Internal id based on parcel id</td>
</tr>
<tr>
<td>Hhtaz</td>
<td>1242</td>
<td>Based on parcel id</td>
</tr>
<tr>
<td>Hhexpfact</td>
<td>1</td>
<td>HH expansion factor</td>
</tr>
<tr>
<td>Samptype</td>
<td>1</td>
<td>Sample type</td>
</tr>
</tbody>
</table>

3.2 Tally internal-external residential VMT by parcels

A. Estimate the shares of IXXI (combined IX + XI) VMT made by residents in SACOG region at TAZ level using variables in Table 2 with the following equation:

$$IX_{VMT_RES} = (IX_{VMT_I} + IX_{VMT_J}) \times \left(\frac{HHS}{1 + HHS + 1.1 * (EMPTOT - FOOD - RET - 0.25 * SVC)} \right)$$

B. Compute IXXI residential VMT per capita rate by RAD
• Join the IX VMT by TAZ table (Table 2) to the table in “tazrad07.txt“ using TAZ values as the join key. The resulting table will tag each TAZ with the Regional Analysis District (RAD) that it falls within.

• Join resulting table to “raw_household.txt” using HHTAZ as the join key in the household table and “TAZ” in the join key in the TAZ/RAD table, which will result in a table with each record being a household with TAZ and RAD tagged to it.

In the resulting table, sum residential VMT (IX_VMT_RES) by RAD and total population (HHSIZE) by RAD.

• Compute the IX_VMT_RES per capita at RAD level by dividing each RAD’s total IX_VMT_RES by its total population. This should result in a table, at the RAD level, listing each RAD and its per-capita VMT, or RES_VMT_RATE

C. Compute IXIXI residential VMT at parcel level

• Using the household-level table and per-capita VMT by RAD table created in step B:
 i. Join the household-level table to the per-capita VMT by RAD table using RAD as the join key
 ii. Calculate each household’s VMT by multiplying its HHSIZE * RES_VMT_RATE of its corresponding RAD, the resulting product will be HHVMT
 iii. Sum total HHVMT by HHPARCEL values to get total residential VMT for each parcel.

3.3 Compute household generated VMT per Capita by any Areas

A. If you completed the steps above in 3.2, you will have a table that has, at a minimum, the following data for each parcel: total population, total residential VMT, and residential VMT per capita. There are several approaches to getting VMT per capita for larger geographies.

B. To calculate for certain, model-derived geographies like TAZ, RAD, or census geographies:
 a. Join the parcel-level VMT per capita table (from step 3.2) to the “parcel.txt” table using PARCELID as the join key. The parcel.txt table contains detailed data on each parcel including several geography keys like RAD, TAZ, and several census geographies.
 b. After joining, you can get aggregate VMT per capita values, e.g. VMT/capita for each TAZ by doing the following:
 i. Get total population and total VMT within each larger geographic area
 ii. Divide each TAZ’s VMT by its population, which will return the VMT per capita for each area of that geography type (e.g. TAZ, RAD, etc)

C. To calculate for custom geographies that are not listed in the parcel.txt table (e.g. if you want VMT/capita for each city in the SACOG region, or VMT/capita for special districts), do the following:
 a. Acquire necessary GIS shapefiles:
 i. Parcel points
ii. Polygons of the geographies whose VMT/capita you want to calculate
b. In GIS, spatially join the polygon data on to the parcel points based on which polygon each parcel point lies within. E.g., if you have a polygon file of council districts, the spatial join operation will return a new version of the parcel point file that, in addition to the original parcel-level data, will now indicate which district each parcel point falls within.
c. Using PARCELID as the join key, join the parcel point table, now with the district information, to the parcel-level VMT per capita table you created in Step 3.2. The resulting table will have PARCELID, district ID, and VMT/capita for each parcel.
d. With this resulting table, you can now get VMT/capita for each district using the same process described in step 3.3.B

Step 4 Tally Internal-Internal Work-related VMT to Job Locations
A. Join “_trip_1_1.csv” to “_tour.tsv”, which will result in the table with the following columns that are necessary for computing work location-based VMT:

<table>
<thead>
<tr>
<th>Field</th>
<th>Source table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDPURP</td>
<td>_tour.tsv</td>
<td>Primary destination purpose for tour</td>
</tr>
<tr>
<td>PARENT</td>
<td>_tour.tsv</td>
<td>Parent tour, 1 = tour is a work-based subtour</td>
</tr>
<tr>
<td>TDPCL</td>
<td>_tour.tsv</td>
<td>Tour’s primary destination parcel</td>
</tr>
<tr>
<td>TOPCL</td>
<td>_tour.tsv</td>
<td>If tour is a subtour, this is the primary destination parcel of the parent tour</td>
</tr>
<tr>
<td>VMT</td>
<td>_trip_1_1.csv</td>
<td>Calculated from distau and mode columns in trip table</td>
</tr>
</tbody>
</table>

B. Filter Table 4-1 to only have trips on work tours, i.e., where PDPURP = 1
C. Compute sum of VMT for each tour destination parcel (TDPCL). This is the VMT of primary work tours that have the parcel as their destination. But it does not yet have the VMT generated by subtours that start at the parcel.
D. Starting with Table 4-1 unfiltered, filter Table 4-1 so that PARENT > 0, so that you only have work-based subtours that start and end at the workplace, regardless of trip purpose.
E. Compute sum of VMT for each TOPCL, which is the origin parcel of the subtour. This VMT is that which is generated by subtours originating at each parcel.
F. For each parcel, sum its primary tour VMT (from step C) with its subtour VMT (from step E). By now you should be able to make a table that lists each parcel and the total
internal-internal trip VMT generated by SACOG region residents that is associated with that parcel.

G. To compute Work related VMT per job at job site, it is suggested to deduct the jobs taking by external workers, since the total VMT calculated in steps A-F only consider SACOG residents. To do so:

- Open the table “worker_ixxifractions.dat” and join it to the parcel level table from steps A-F using TAZ as the join key. The worker_ixxifractions has 3 variables - TAZ, the share of TAZ residents going outside the region for work, and the share of workers who live outside the region who come into the region to work in that TAZ.
- Estimate the number of external workers for each parcel by multiplying its fraction of external workers (from the worker_ixxifractions.dat table) by the total number of jobs on the parcel (from the parcel table).
- Subtract the number of external workers from the total workers to get the approximate number of SACOG resident workers whose job location is at the parcel.
- Divide that parcel’s work-end VMT (calculated in steps A-F) by its estimated total resident workers to get the parcel’s average VMT per job.

Table 4 An Example of Tour Table _tour.tsv

<table>
<thead>
<tr>
<th>Variable</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>171</td>
<td>internal daysim record ID</td>
</tr>
<tr>
<td>person_id</td>
<td>17</td>
<td>internal daysim record ID</td>
</tr>
<tr>
<td>person_day_id</td>
<td>17</td>
<td>internal daysim record ID</td>
</tr>
<tr>
<td>hhno</td>
<td>17</td>
<td>Household id</td>
</tr>
<tr>
<td>pno</td>
<td>1</td>
<td>person seq no on file</td>
</tr>
<tr>
<td>day</td>
<td>1</td>
<td>Diary / simulation day ID</td>
</tr>
<tr>
<td>tour</td>
<td>1</td>
<td>tour id</td>
</tr>
<tr>
<td>jtindex</td>
<td>0</td>
<td>hh joint tour index</td>
</tr>
<tr>
<td>parent</td>
<td>0</td>
<td>parent tour id if >0 meaning it is a sub-tour</td>
</tr>
<tr>
<td>subtrs</td>
<td>0</td>
<td>number of subtours</td>
</tr>
<tr>
<td>pdpurp</td>
<td>1</td>
<td>Tour destination purpose 1- work 2- school 3-</td>
</tr>
<tr>
<td>tlvorig</td>
<td>513</td>
<td>time leave tour origin</td>
</tr>
<tr>
<td>tardest</td>
<td>567</td>
<td>time larrive tour dest</td>
</tr>
<tr>
<td>tlvdest</td>
<td>1129</td>
<td>time leave tour dest</td>
</tr>
<tr>
<td>tarorig</td>
<td>1135</td>
<td>time arrive tour origin</td>
</tr>
<tr>
<td>toadtyp</td>
<td>1</td>
<td>tour origin address type</td>
</tr>
<tr>
<td>tdadtyp</td>
<td>2</td>
<td>tour destination address type</td>
</tr>
<tr>
<td>Code</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>topcl</td>
<td>101013667</td>
<td>tour origin parcel</td>
</tr>
<tr>
<td>totaz</td>
<td>1242</td>
<td>tour origin TAZ</td>
</tr>
<tr>
<td>tdpcl</td>
<td>101013930</td>
<td>tour dest parcel</td>
</tr>
<tr>
<td>tdtaz</td>
<td>1243</td>
<td>tour destination TAZ</td>
</tr>
<tr>
<td>tmodetp</td>
<td>5</td>
<td>tour main mode type</td>
</tr>
<tr>
<td>tpathtp</td>
<td>1</td>
<td>tour main mode path type</td>
</tr>
<tr>
<td>tautotime</td>
<td>1.157218359</td>
<td>tour 1-way auto time</td>
</tr>
<tr>
<td>tautocost</td>
<td>0.061806588</td>
<td>tour 1-way auto distance</td>
</tr>
<tr>
<td>tautodist</td>
<td>0.490617922</td>
<td>tour 1-way auto cost</td>
</tr>
<tr>
<td>tripsh1</td>
<td>3</td>
<td>1st half tour # of trips</td>
</tr>
<tr>
<td>tripsh2</td>
<td>2</td>
<td>2nd half tour # of trips</td>
</tr>
<tr>
<td>phtindx1</td>
<td>0</td>
<td>1st half-partial joint half tour index</td>
</tr>
<tr>
<td>phtindx2</td>
<td>0</td>
<td>2nd half-partial joint half tour index</td>
</tr>
<tr>
<td>fhtindx1</td>
<td>0</td>
<td>1s half- fully joint half tour index</td>
</tr>
<tr>
<td>fhtindx2</td>
<td>0</td>
<td>2nd half- fully joint half tour index</td>
</tr>
<tr>
<td>toexpfac</td>
<td>1</td>
<td>trip expansion factor</td>
</tr>
</tbody>
</table>
Appendix A Cube Voyager Script – Attach Skims to Trips

; Notes:

;--

loop p=1,9
 if (p=01) per='h07'
 if (p=02) per='h08'
 if (p=03) per='h09'
 if (p=04) per='md5'
 if (p=05) per='h15'
 if (p=06) per='h16'
 if (p=07) per='h17'
 if (p=08) per='ev2'
 if (p=09) per='n11'

votcl=1

tnt=1

ivot=60/12.51 ; need to update to match tolling ivots

tntst = 'nt'

;--

; step 8

IF (p=1,2,3,5,6,7) ; am,pm end loop at 739

RUN PGM=HIGHWAY MSG='step 8 Highway skims'

; Highway skims for all occupancies, at one period, VOT, tolling class at a time
NETI=vo.@per.@.net ; input network

MATO=tempsk@per.@.mat, MO=1-9, dec=9*2, ; output skim matrices
name=da_time, da_dist, da_cdist, s2_time, s2_dist, s2_cdist, s3_time, s3_dist, s3_cdist

;IFCLUSTER:
DistributeIntraStep processid='sacsimsub', ProcessList=1-3, mingroupsize=400

PHASE=LINKREAD ; define link groups

if (li.vc_1>=1.0)
 comp lw.vc10dist=li.distance
else
 lw.vc10dist=0.0
ENDIF

; Settings for network path choice based on configuration settings
CostPerMile = 0.17
HOV2Divisor = 1.00; was 1.66 - No need to divide by occupancy since DaySim places shared ride trips in higher VOT class
HOV3Divisor = 1.00; was 2.23

IF (li.USECLASS == 0) ADDTOGROUP=1 ; GENERAL PURPOSE
IF (li.USECLASS == 2) ADDTOGROUP=2 ; HOV2
IF (li.USECLASS == 3) ADDTOGROUP=3 ; HOV3+
lw.AOCost = li.distance * CostPerMile
if (@tnt@ <= 0) ;if No-Toll class...
 tollivot = 150 ;severe perception factor for tolls, for the no-toll class
else
 tollivot = @ivot@
endif

lw.imped_da = li.time_1 + (li.tollda*tollivot + lw.AOCost*@ivot@)
lw.imped_s2 = li.time_1 + (li.tolls2*tollivot + lw.AOCost*@ivot@) / HOV2Divisor
lw.imped_s3 = li.time_1 + (li.tolls3*tollivot + lw.AOCost*@ivot@) / HOV3Divisor
endphase

PHASE=ILOOP
;Skim SOV paths without HOV links
 PATHLOAD PATH=lw.imped_da,EXCLUDEGRP=2,3,
 mw[1]=pathtrace(li.time_1), noaccess=0,
 mw[2]=pathtrace(li.distance), noaccess=0,
 mw[3]=pathtrace(lw.vc10dist), noaccess=0

; Skim SR2 paths with HOV links
 PATHLOAD PATH=lw.imped_s2,EXCLUDEGRP=3,
 mw[4]=pathtrace(li.time_1), noaccess=0,
 mw[5]=pathtrace(li.distance), noaccess=0,
 mw[6]=pathtrace(lw.vc10dist), noaccess=0

; Skim SR3 paths with HOV links
PATHLOAD PATH=lw.imped_s3,
 mw[7]=pathtrace(li.time_1), noaccess=0,
 mw[8]=pathtrace(li.distance), noaccess=0,
 mw[9]=pathtrace(lw.vc10dist), noaccess=0

;Intrazonals

;Intrazonals
 iz1=lowest(1,1,0.005,10000)*0.5
 iz2=lowest(2,1,0.005,10000)*0.5
 iz4=lowest(4,1,0.005,10000)*0.5
 iz5=lowest(5,1,0.005,10000)*0.5
 iz7=lowest(7,1,0.005,10000)*0.5
 iz8=lowest(8,1,0.005,10000)*0.5

 jloop j=i
 mw[1]=iz1
 mw[2]=iz2
 mw[4]=iz4
 mw[5]=iz5
 mw[7]=iz7
 mw[8]=iz8
 endjloop

ENDPHASE
ENDRUN

;======md,ev,ni==========================
ELSE

RUN PGM=HIGHWAY MSG='step 8 Highway skims'

; Highway skims for all occupancies, at one period, VOT, tolling class at a time

NETI=vo.@per@.net ; input network
MATO=tempsk@per@.mat, MO=1-9,dec=9*2, ; output skim matrices
name=da_time, da_dist,da_cdist, s2_time,s2_dist,s2_cdist, s3_time, s3_dist,s3_cdist

;IFCLUSTER:
DistributeIntraStep processid='sacsimsub', ProcessList=1-3, mingroupsize=400

PHASE=LINKREAD ;define link groups

if (li.vc_1>=1.0)
 comp lw.vc10dist=li.distance
else
 lw.vc10dist=0.0
ENDIF

; Settings for network path choice based on configuration settings
CostPerMile = 0.17
HOV2Divisor = 1.00; was 1.66 - No need to divide by occupancy since DaySim places
shared ride trips in higher VOT class
HOV3Divisor = 1.00; was 2.23
IF (li.USECLASS == 0) ADDTOGROUP=1 ;GENERAL PURPOSE
IF (li.USECLASS == 2) ADDTOGROUP=2 ;HOV2
IF (li.USECLASS == 3) ADDTOGROUP=3 ;HOV3+
 IF (li.USECLASS == 4) ADDTOGROUP=4 ;3+ axle commercial (for off peak)

lw.AOCost = li.distance * CostPerMile
if (@tnt@ <= 0) ;if No-Toll class...
 tollivot = 150 ;severe perception factor for tolls, for the no-toll class
else
 tollivot = @ivot@
endif

lw.imped_da = li.time_1 + (li.tollda*tollivot + lw.AOCost*@ivot@)
lw.imped_s2 = li.time_1 + (li.tolls2*tollivot + lw.AOCost*@ivot@) / HOV2Divisor
lw.imped_s3 = li.time_1 + (li.tolls3*tollivot + lw.AOCost*@ivot@) / HOV3Divisor
endphase

PHASE=ILOOP

;Skim SOV paths without HOV links
PATHLOAD PATH=lw.imped_da,EXCLUDEGRP=2,3,
 mw[1]=pathtrace(li.time_1), noaccess=0,
 mw[2]=pathtrace(li.distance), noaccess=0,
 mw[3]=pathtrace(lw.vc10dist), noaccess=0

; Skim SR2 paths with HOV links
PATHLOAD PATH=lr.lead_s2,EXCLUDEGRP=3,
 mw[4]=pathtrace(li.time_1), noaccess=0,
 mw[5]=pathtrace(li.distance), noaccess=0,
 mw[6]=pathtrace(lr.vc10dist), noaccess=0

; Skim SR3 paths with HOV links
 PATHLOAD PATH=lr.lead_s3,
 mw[7]=pathtrace(li.time_1), noaccess=0,
 mw[8]=pathtrace(li.distance), noaccess=0,
 mw[9]=pathtrace(lr.vc10dist), noaccess=0

; Intrazonals
 iz1=lowest(1,1,0.005,10000)*0.5
 iz2=lowest(2,1,0.005,10000)*0.5
 iz4=lowest(4,1,0.005,10000)*0.5
 iz5=lowest(5,1,0.005,10000)*0.5
 iz7=lowest(7,1,0.005,10000)*0.5
 iz8=lowest(8,1,0.005,10000)*0.5
 jloop j=i
 mw[1]=iz1
 mw[2]=iz2
 mw[4]=iz4
 mw[5]=iz5
 mw[7]=iz7
 mw[8]=iz8
endjloop
endphase
ENDRUN

; 9 auto time periods
endif
ENDLOOP

;---
run pgm=matrix
; Attach skim data to trip records

;dbi[1]=._trip_1.tsv, delimiter[1]='+t', fields=1

FILEI RECI = _trip.tsv,
id=1,tour_id=2,hhno=3,pno=4,day=5,tour=6,half=7,tseg=8,tsvid=9,opurp=10,dpurp=11,oadtp=12,dadtyp=13,opcl=14,otaz=15,dpcl=16,dtaz=17,
mode=18,pathtype=19,dorp=20,deptm=21,arrtm=22,endlacttm=23,travtime=24,travcost=25,travdist=26,vot=27,trexpfac=28,
delimiter[1]='+t', SORT=otaz

MATI[1]=tempskh07.mat ;7am skim file
MATI[2]=tempskh08.mat
MATI[3]=tempskh09.mat
MATI[4]=tempskmd5.mat
MATI[5]=tempskh15.mat
MATI[7]=tempskh17.mat
MATI[8]=tempskev2.mat
MATI[9]=tempskn11.mat
if (reci.recno=1)

 loop f=1, reci.numfields
 if (reci.cfield[f]='id') f_id = f
 if (reci.cfield[f]='tour_id') f_tour_id = f
 if (reci.cfield[f]='hhno') f_hhno = f
 if (reci.cfield[f]='pno') f_pno = f
 if (reci.cfield[f]='day') f_day = f
 if (reci.cfield[f]='tour') f_tour = f
 if (reci.cfield[f]='half') f_half = f
 if (reci.cfield[f]='tseg') f_tseg = f
 if (reci.cfield[f]='tsvid') f_tsvid = f
 if (reci.cfield[f]='opurp') f_opurp = f
 if (reci.cfield[f]='dpurp') f_dpurp = f
 if (reci.cfield[f]='oadtyp') f_oadtyp = f
 if (reci.cfield[f]='dadtyp') f_dadtyp = f
 if (reci.cfield[f]='opcl') f_opcl = f
 if (reci.cfield[f]='otaz') f_otaz = f
 if (reci.cfield[f]='dpcl') f_dpcl = f
 if (reci.cfield[f]='dtaz') f_dtaz = f
 if (reci.cfield[f]='mode') f_mode = f
 if (reci.cfield[f]='pathtype') f_pathtype = f
 if (reci.cfield[f]='dorp') f_dorp = f
 if (reci.cfield[f]='deptm') f_deptm = f
 if (reci.cfield[f]='arrtm') f_arrtm = f
 if (reci.cfield[f]='endacttm') f_endacttm = f
 if (reci.cfield[f]='travtime') f_travtime = f
if (reci.cfield[f] = 'travcost') f_travcost = f
if (reci.cfield[f] = 'travdist') f_travdist = f
if (reci.cfield[f] = 'vot') f_vot = f
if (reci.cfield[f] = 'trexpfac') f_trexpfac = f
endloop

print file=_trip_1_1.csv, list=
'id,tour_id,hhno,pno,day,tour,half,tseg,tsvid,opurp,dpurp,oadtyp,dadtyp,opcl,otaz,dpcl,dtaz,
mode,pathtype,dorp,depm,arrrm,endacttm,travtime,travcost,travdist,vot,trexpfac,timeau,distau,distcong'

else

 trip_id = val(reci.cfield[f_id])
tour_id = val(reci.cfield[f_tour_id])
 hhno = val(reci.cfield[f_hhno])
pno = val(reci.cfield[f_pno])
day = val(reci.cfield[f_day])
tour = val(reci.cfield[f_tour])
 half = val(reci.cfield[f_half])
tseg = val(reci.cfield[f_tseg])
 tsvid = val(reci.cfield[f_tsvid])
 opurp = val(reci.cfield[f_opurp])
 dpurp = val(reci.cfield[f_dpurp])
 oadtyp = val(reci.cfield[f_oadtyp])
 dadtyp = val(reci.cfield[f_dadtyp])
 opcl = val(reci.cfield[f_opcl])
 otaz = val(reci.cfield[f_otaz])
 dpcl = val(reci.cfield[f_dpcl])
 dtaz = val(reci.cfield[f_dtaz])
 mode = val(reci.cfield[f_mode])
pathtype = val(reci.cfield[f_pathtype])
dorp = val(reci.cfield[f_dorp])
deptm = val(reci.cfield[f_deptm])
arrtm = val(reci.cfield[f_arrtm])
endacttm = val(reci.cfield[f_endacttm])
travtime = val(reci.cfield[f_travtime])
travcost = val(reci.cfield[f_travcost])
travdist = val(reci.cfield[f_travdist])
vot = val(reci.cfield[f_vot])
trexpfac = val(reci.cfield[f_trexpfac])

; Segment the trip time
array seghr=9, tripseg=9
seghr[1]= 7
seghr[2]= 8
seghr[3]= 9
seghr[4]= 10
seghr[5]= 15
seghr[6]= 16
seghr[7]= 17
seghr[8]= 18
seghr[9]= 20

arrhr = ri.arrtm/60 ;arrival hour
dephr = ri.deptm/60 ;departure hour
durhr = (arrhr - dephr) ;trip duration, in hours
if (durhr = 0)
\(\text{arrhr} = \text{arrhr} + 0.0001 \); ensure there are no trips with zero duration

\(\text{durhr} = 0.0001 \)

\(\text{elseif (durhr < 0)} \)
\(\text{durhr} = \text{durhr} + 24 \)

\(\text{endif} \)

; Separate the after-midnight portion only if trip straddles midnight

; into trip1: dephr to 24 (alias arrhr),
; and trip2: 0 to arrhr (alias arr2)

if (arrhr < dephr) ; if departure hour is from previous day (e.g., from 11pm-1am), then
split trip into two, with first ending at midnight and second starting at midnight

\(\text{arr2} = \text{arrhr} \)
\(\text{arrhr} = 24 \)
else
\(\text{arr2} = 0 \)
endif

; Fraction of trip within each period

; E.g., if trip started at 8:30 and ended 9:30, for loop s = 2 it'd be (9am - 8:30am) + 0, or
30mins, or 50\% of trip in time period one, then 1-50\%, or 0.5, in period 2

; does this work for trips that straddle 3 or more time periods? Yes, it does. Tested.

\(\text{ni} = 1 ; \text{ni} = \text{network in?} \)

\(\text{loop s=1,8} ; \text{don't loop through s[9] because each loop goes to s[n+1]} \)
\(\text{hrbeg} = \text{seghr}[s] ; \text{returns hour of period s} \)
\(\text{hrend} = \text{seghr}[s+1] ; \text{returns hour of period (s+1)} \)
\(\text{t_part} = (\max(0, \min(hrend, \text{arrhr}) - \max(hrbeg, \text{dephr})) + \max(hrbeg, \text{dephr})) + ; \text{(duration of trip in period)/total duration of trip}. \)
\(\max(0, \min(hrend, \text{arr2 } - \text{hrbeg})) / \text{durhr} \)
tripseg[s] = t_part

; ni9 = ni9 - tseg
ni = ni - t_part
endloop
ni = max(0, ni)

; To fields
a1 = tripseg[1] ;portion of trip happening in time segment 1
a2 = tripseg[2]
a3 = tripseg[3]
md = tripseg[4]
p1 = tripseg[5]
p2 = tripseg[6]
p3 = tripseg[7]
ev = tripseg[8]
i = ni

; Select skims

IF (mode = 5) ; S3

a1timeau = a1*matval(1, 7, otaz, dtaz) ;MatVal(filenumber, tablenumber, i, j, failvalue)
a1distau = a1*matval(1, 8, otaz, dtaz) ;(portion of trip in time period 1) * (period 1 skim distance from trip's origin to trip's destination)
a1distcong = a1*matval(1, 9, otaz, dtaz) ;matrix value for i-j combo in the congested distance tab (tab 9) of the first skim file (7am period)
a2timeau = a2*matval(2, 7, otaz, dtaz)
a2distau = a2*matval(2, 8, otaz, dtaz)
\[
\begin{align*}
a_{2, \text{dist cong}} & = a_{2} \times \text{matval}(2, 9, \text{otaz}, \text{dtaz}) \\
a_{3, \text{time au}} & = a_{3} \times \text{matval}(3, 7, \text{otaz}, \text{dtaz}) \\
a_{3, \text{dist au}} & = a_{3} \times \text{matval}(3, 8, \text{otaz}, \text{dtaz}) \\
a_{3, \text{dist cong}} & = a_{3} \times \text{matval}(3, 9, \text{otaz}, \text{dtaz}) \\
m_{d, \text{time au}} & = M_{D} \times \text{matval}(4, 7, \text{otaz}, \text{dtaz}) \\
m_{d, \text{dist au}} & = M_{D} \times \text{matval}(4, 8, \text{otaz}, \text{dtaz}) \\
m_{d, \text{dist cong}} & = M_{D} \times \text{matval}(4, 9, \text{otaz}, \text{dtaz}) \\
p_{1, \text{time au}} & = P_{1} \times \text{matval}(5, 7, \text{otaz}, \text{dtaz}) \\
p_{1, \text{dist au}} & = P_{1} \times \text{matval}(5, 8, \text{otaz}, \text{dtaz}) \\
p_{1, \text{dist cong}} & = P_{1} \times \text{matval}(5, 9, \text{otaz}, \text{dtaz}) \\
p_{2, \text{time au}} & = P_{2} \times \text{matval}(6, 7, \text{otaz}, \text{dtaz}) \\
p_{2, \text{dist au}} & = P_{2} \times \text{matval}(6, 8, \text{otaz}, \text{dtaz}) \\
p_{2, \text{dist cong}} & = P_{2} \times \text{matval}(6, 9, \text{otaz}, \text{dtaz}) \\
p_{3, \text{time au}} & = P_{3} \times \text{matval}(7, 7, \text{otaz}, \text{dtaz}) \\
p_{3, \text{dist au}} & = P_{3} \times \text{matval}(7, 8, \text{otaz}, \text{dtaz}) \\
p_{3, \text{dist cong}} & = P_{3} \times \text{matval}(7, 9, \text{otaz}, \text{dtaz}) \\
ev_{t, \text{time au}} & = E_{V} \times \text{matval}(8, 7, \text{otaz}, \text{dtaz}) \\
ev_{d, \text{dist au}} & = E_{V} \times \text{matval}(8, 8, \text{otaz}, \text{dtaz}) \\
ev_{d, \text{dist cong}} & = E_{V} \times \text{matval}(8, 9, \text{otaz}, \text{dtaz}) \\
n_{i, \text{time au}} & = n_{i} \times \text{matval}(9, 7, \text{otaz}, \text{dtaz}) \\
n_{i, \text{dist au}} & = n_{i} \times \text{matval}(9, 8, \text{otaz}, \text{dtaz}) \\
n_{i, \text{dist cong}} & = n_{i} \times \text{matval}(9, 9, \text{otaz}, \text{dtaz})
\end{align*}
\]
ELSEIF (mode = 4) ; S2

\[a1_{time au} = a1 \times \text{matval}(1, 4, otaz, dtaz) \]
\[a1_{dist au} = a1 \times \text{matval}(1, 5, otaz, dtaz) \]
\[a1_{dist cong} = a1 \times \text{matval}(1, 6, otaz, dtaz) \]
\[a2_{time au} = a2 \times \text{matval}(2, 4, otaz, dtaz) \]
\[a2_{dist au} = a2 \times \text{matval}(2, 5, otaz, dtaz) \]
\[a2_{dist cong} = a2 \times \text{matval}(2, 6, otaz, dtaz) \]
\[a3_{time au} = a3 \times \text{matval}(3, 4, otaz, dtaz) \]
\[a3_{dist au} = a3 \times \text{matval}(3, 5, otaz, dtaz) \]
\[a3_{dist cong} = a3 \times \text{matval}(3, 6, otaz, dtaz) \]
\[m_d_{time au} = MD \times \text{matval}(4, 4, otaz, dtaz) \]
\[m_d_{dist au} = MD \times \text{matval}(4, 5, otaz, dtaz) \]
\[m_d_{dist cong} = MD \times \text{matval}(4, 6, otaz, dtaz) \]
\[p1_{time au} = P1 \times \text{matval}(5, 4, otaz, dtaz) \]
\[p1_{dist au} = P1 \times \text{matval}(5, 5, otaz, dtaz) \]
\[p1_{dist cong} = P1 \times \text{matval}(5, 6, otaz, dtaz) \]
\[p2_{time au} = P2 \times \text{matval}(6, 4, otaz, dtaz) \]
\[p2_{dist au} = P2 \times \text{matval}(6, 5, otaz, dtaz) \]
\[p2_{dist cong} = P2 \times \text{matval}(6, 6, otaz, dtaz) \]
\[p3_{time au} = P3 \times \text{matval}(7, 4, otaz, dtaz) \]
\[p3_{dist au} = P3 \times \text{matval}(7, 5, otaz, dtaz) \]
\[p3_{dist cong} = P3 \times \text{matval}(7, 6, otaz, dtaz) \]
\[e_v_{time au} = EV \times \text{matval}(8, 4, otaz, dtaz) \]
\[e_v_{dist au} = EV \times \text{matval}(8, 5, otaz, dtaz) \]
evdistcong = EV*matval(8, 6, otaz, dtaz)

nitimeau = ni*matval(9, 4, otaz, dtaz)
nidistau = ni*matval(9, 5, otaz, dtaz)
nidistcong = ni*matval(9, 6, otaz, dtaz)

ELSEIF (mode=3); Drive Alone

a1timeau = a1*matval(1, 1, otaz, dtaz)
a1distau = a1*matval(1, 2, otaz, dtaz)
a1distcong = a1*matval(1, 3, otaz, dtaz)
a2timeau = a2*matval(2, 1, otaz, dtaz)
a2distau = a2*matval(2, 2, otaz, dtaz)
a2distcong = a2*matval(2, 3, otaz, dtaz)
a3timeau = a3*matval(3, 1, otaz, dtaz)
a3distau = a3*matval(3, 2, otaz, dtaz)
a3distcong = a3*matval(3, 3, otaz, dtaz)

mdtimeau = MD*matval(4, 1, otaz, dtaz)
mddistau = MD*matval(4, 2, otaz, dtaz)
mddistcong = MD*matval(4, 3, otaz, dtaz)

p1timeau = P1*matval(5, 1, otaz, dtaz)
p1distau = P1*matval(5, 2, otaz, dtaz)
p1distcong = P1*matval(5, 3, otaz, dtaz)
p2timeau = P2*matval(6, 1, otaz, dtaz)
p2distau = P2*matval(6, 2, otaz, dtaz)
p2distcong = P2*matval(6, 3, otaz, dtaz)
p3timeau = P3*matval(7, 1, otaz, dtaz)
p3distau = P3 * matval(7, 2, otaz, dtaz)
p3distcong = P3 * matval(7, 3, otaz, dtaz)

evtimeau = EV * matval(8, 1, otaz, dtaz)
evdistau = EV * matval(8, 2, otaz, dtaz)
evdistcong = EV * matval(8, 3, otaz, dtaz)

nitimeau = ni * matval(9, 1, otaz, dtaz)
nidistau = ni * matval(9, 2, otaz, dtaz)
nidistcong = ni * matval(9, 3, otaz, dtaz)

ELSEIF (mode=9) ; TNC (4/30/2018 - using drive-alone skims for now, but this should be changed in future to reflect shared TNCs)
a1timeau = a1 * matval(1, 1, otaz, dtaz)
a1distau = a1 * matval(1, 2, otaz, dtaz)
a1distcong = a1 * matval(1, 3, otaz, dtaz)
a2timeau = a2 * matval(2, 1, otaz, dtaz)
a2distau = a2 * matval(2, 2, otaz, dtaz)
a2distcong = a2 * matval(2, 3, otaz, dtaz)
a3timeau = a3 * matval(3, 1, otaz, dtaz)
a3distau = a3 * matval(3, 2, otaz, dtaz)
a3distcong = a3 * matval(3, 3, otaz, dtaz)

mdtimeau = MD * matval(4, 1, otaz, dtaz)
mddistau = MD * matval(4, 2, otaz, dtaz)
mddistcong = MD * matval(4, 3, otaz, dtaz)

p1timeau = P1 * matval(5, 1, otaz, dtaz)
p1distau = P1*matval(5, 2, otaz, dtaz)
p1distcong = P1*matval(5, 3, otaz, dtaz)
p2timeau = P2*matval(6, 1, otaz, dtaz)
p2distau = P2*matval(6, 2, otaz, dtaz)
p2distcong = P2*matval(6, 3, otaz, dtaz)
p3timeau = P3*matval(7, 1, otaz, dtaz)
p3distau = P3*matval(7, 2, otaz, dtaz)
p3distcong = P3*matval(7, 3, otaz, dtaz)
evtimeau = EV*matval(8, 1, otaz, dtaz)
evdistau = EV*matval(8, 2, otaz, dtaz)
evdistcong = EV*matval(8, 3, otaz, dtaz)
nitimeau = ni*matval(9, 1, otaz, dtaz)
nidistau = ni*matval(9, 2, otaz, dtaz)
nidistcong = ni*matval(9, 3, otaz, dtaz)

ENDIF

IF (mode=1,2,6,7,8) ;if mode is not a car mode, then auto time and congested distance all = 0
 timeau = 0
 distau = 0
 distcong = 0
 print file=._trip_1_1.csv, list=
 trip_id(20.0),',',tour_id(12.0),',',hhno(10.0),',',pno(2.0),',',day(2.0),',',tour(2.0),',',half(2.0),',',ts
eg(2.0),',',tsvid(2.0),',',opurp(2.0),',',dpurp(2.0),',',oadtyp(2.0),',',dadtyp(2.0),',',opcl(10.0),',',ot
az(10.0),',',dpcl(10.0),',',dtaz(10.0),',',mode(2.0),',',pathtype(2.0),',',dorp(2.0),',',deptm(10.0),',
 ,arrtm(10.0),',',endacttm(10.0),',',travtime(10.2),',',travcost(10.2),',',travdist(10.2),',',vot(8.2),
 ',trexpfac(2.0),',',timeau(10.2),',',distau(10.2),',',distcong(10.2)
ELSEIF (mode=3,4,5,9) ;if mode is a car mode, then get total times, distance, congested
distance as follows:

timeau=a1timeau+a2timeau+a3timeau+mdtimeau+p1timeau+p2timeau+p3timeau+evtimeau
+nitimeau ;sum the skim-based times

distau=a1distau+a2distau+a3distau+mddistau+p1distau+p2distau+p3distau+evdistau+nidista
u ;sum the skim-based total distances

distcong=a1distcong+a2distcong+a3distcong+mddistcong+p1distcong+p2distcong+p3distcong
+evdistcong+nidistcong ;sum the skim-based congested distances

 print file=./trip_1_1.csv, list=
 trip_id(20.0),',',tour_id(12.0),',',hhno(10.0),',',pno(2.0),',',day(2.0),',',half(2.0),',',ts
 eg(2.0),',',tsvid(2.0),',',opurp(2.0),',',dpurp(2.0),',',oadtyp(2.0),',',dadtyp(2.0),',',opcl(10.0),',',ot
 az(10.0),',',dpcl(10.0),',',dtaz(10.0),',',mode(2.0),',',pathtype(2.0),',',dorp(2.0),',',deptm(10.0),',
 ',artrm(10.0),',',endacttm(10.0),',',travtime(10.2),',',travcost(10.2),',',travdist(10.2),',',vot(8.2),
 ',',trexpfac(2.0),',',timeau(10.2),',',distau(10.2),',',distcong(10.2)

ENDIF

ENDIF ; reco

ENDRUN

--
Appendix B Cube Voyager Script – IXXI trips
--

RUN PGM=MATRIX MSG='convert parcel txt into dbf'
FILEI RECI = ?_raw_parcel.txt,delimiter[1]=','

FILEO reco[1] = ?_raw_parcel.dbf,

fields=parcelid(12.0),taz(5.0),hh_p(10.5),empfoo_p(10.5),empret_p(10.5),empsvc_p(10.5),emptot_p(10.5)

if (reci.recno=1)
 loop f=1, reci.numfields
 if (reci.cfield[f]='parcelid') f_parcelid = f
 if (reci.cfield[f]='taz_p') f_taz_p = f
 if (reci.cfield[f]='hh_p') f_hh_p = f
 if (reci.cfield[f]='empfoo_p') f_empfoo_p = f
 if (reci.cfield[f]='empret_p') f_empret_p = f
 if (reci.cfield[f]='empsvc_p') f_empsvc_P = f
 if (reci.cfield[f]='emptot_p') f_emptot_p = f
 endloop

ELSE
 ro.parcelid = val(reci.cfield[f_parcelid])
 ro.taz = val(reci.cfield[f_taz_p])
 ro.hh_p = val(reci.cfield[f_hh_p])
 ro.empfoo_p = val(reci.cfield[f_empfoo_p])
 ro.empret_p = val(reci.cfield[f_empret_p])
 ro.empsvc_p = val(reci.cfield[f_empsvc_p])
 ro.emptot_p = val(reci.cfield[f_emptot_p])

 WRITE reco=1
run pgm=matrix msg='compile ix+xi person and vehicle trips, miles, c-miles'
; compile ix+xi (basically, any trip from the external matrix for regional indicators
;
; Input files:
filei mati[1]="trips.external.mat"

mati[2]="tempskh07.mat"

mati[3]="tempskmd5.mat"

mati[4]="tempskh16.mat"

mati[5]="tempskev2.mat"

; main output is a matrix w/ all variables combined for calculations...
mato[1]="ixxi_temp.mat", mo=5-13 name=x_vt,x_vht,x_vmt,x_cvmt,hhs,emptot,food,ret,svc

; initialize p-a person trips by purpose
;
zdati[2] = ?_raw_parcel.dbf,
sum=hh_p,

EMPFOO_P,

EMPRET_P,

EMPSVC_P,

EMPTOT_P
; jloop
;
mw[1]=mi.1.xwk
mw[2]=mi.1.xpb
mw[3]=mi.1.xsh
mw[4]=mi.1.xsr
; transposes
mw[28] = mi.1.xwk.t
mw[23] = mi.1.xpb.t
mw[24] = mi.1.xsh.t
mw[25] = mi.1.xsr.t

; A3
; first drive alone
; share tot_pa tot_ap
x_da_a3 = 0.890*(mi.1.xwk*0.295 + mw[28]*0.018)
x_da_a3 = 0.540*(mi.1.xpb*0.088 + mw[23]*0.037) + x_da_a3
x_da_a3 = 0.450*(mi.1.xsh*0.028 + mw[24]*0.027) + x_da_a3
x_da_a3 = 0.290*(mi.1.xsr*0.060 + mw[25]*0.029) + x_da_a3
;
; next shared ride--s2 and s3+ combined...
; share tot_pa tot_ap vocc
x_sr_a3 = 0.110*(mi.1.xwk*0.295 + mw[28]*0.018)/2.34
x_sr_a3 = 0.460*(mi.1.xpb*0.088 + mw[23]*0.037)/2.55 + x_sr_a3
x_sr_a3 = 0.550*(mi.1.xsh*0.028 + mw[24]*0.027)/2.41 + x_sr_a3
x_{sr,a3} = 0.710*(mi.1.xsr*0.060 + mw[25]*0.029)/2.85 + x_{sr,a3} \\
; \\
; MD \\
; first drive alone \\
; share tot_pa tot_ap \\
x_{da_md} = 0.890*(mi.1.xwk*0.101 + mw[28]*0.098) \\
x_{da_md} = 0.540*(mi.1.xpb*0.264 + mw[23]*0.226) + x_{da_md} \\
x_{da_md} = 0.450*(mi.1.xsh*0.231 + mw[24]*0.217) + x_{da_md} \\
x_{da_md} = 0.290*(mi.1.xsr*0.173 + mw[25]*0.149) + x_{da_md} \\
; \\
; next shared ride--s2 and s3+ combined... \\
; share tot_pa tot_ap vocc \\
x_{sr_md} = 0.110*(mi.1.xwk*0.101 + mw[28]*0.098)/2.34 \\
x_{sr_md} = 0.460*(mi.1.xpb*0.264 + mw[23]*0.226)/2.55 + x_{sr_md} \\
x_{sr_md} = 0.550*(mi.1.xsh*0.231 + mw[24]*0.217)/2.41 + x_{sr_md} \\
x_{sr_md} = 0.710*(mi.1.xsr*0.173 + mw[25]*0.149)/2.85 + x_{sr_md} \\
; \\
; P3 \\
; first drive alone \\
; share tot_pa tot_ap \\
x_{da_p3} = 0.890*(mi.1.xwk*0.035 + mw[28]*0.300) \\
x_{da_p3} = 0.540*(mi.1.xpb*0.112 + mw[23]*0.165) + x_{da_p3} \\
x_{da_p3} = 0.450*(mi.1.xsh*0.181 + mw[24]*0.178) + x_{da_p3} \\
x_{da_p3} = 0.290*(mi.1.xsr*0.147 + mw[25]*0.117) + x_{da_p3} \\
; \\
; next shared ride--s2 and s3+ combined... \\
; share tot_pa tot_ap vocc
\[x_{sr_p3} = 0.110*(mi.1.xwk*0.035 + mw[28]*0.300)/2.34 \]
\[x_{sr_p3} = 0.460*(mi.1.xpb*0.112 + mw[23]*0.165)/2.55 + x_{sr_p3} \]
\[x_{sr_p3} = 0.550*(mi.1.xsh*0.181 + mw[24]*0.178)/2.41 + x_{sr_p3} \]
\[x_{sr_p3} = 0.710*(mi.1.xsr*0.147 + mw[25]*0.117)/2.85 + x_{sr_p3} \]

; EV
; first drive alone
; share	tot_pa	tot_ap
\[x_{da_ev} = 0.890*(mi.1.xwk*0.069 + mw[28]*0.084) \]
\[x_{da_ev} = 0.540*(mi.1.xpb*0.036 + mw[23]*0.072) + x_{da_ev} \]
\[x_{da_ev} = 0.450*(mi.1.xsh*0.060 + mw[24]*0.078) + x_{da_ev} \]
\[x_{da_ev} = 0.290*(mi.1.xsr*0.120 + mw[25]*0.205) + x_{da_ev} \]

; next shared ride--s2 and s3+ combined...
; share	tot_pa	tot_ap\tvocc
\[x_{sr_ev} = 0.110*(mi.1.xwk*0.069 + mw[28]*0.084)/2.34 \]
\[x_{sr_ev} = 0.460*(mi.1.xpb*0.036 + mw[23]*0.072)/2.55 \]
\[x_{sr_ev} = 0.550*(mi.1.xsh*0.060 + mw[24]*0.078)/2.41 \]
\[x_{sr_ev} = 0.710*(mi.1.xsr*0.120 + mw[25]*0.205)/2.85 \]

; order of calcs as follows: vts; vht; vmt; cvmt

\[mw[5]=x_{da_a3}+x_{da_md}+x_{da_p3}+x_{da_ev}+x_{sr_a3}+x_{sr_md}+x_{sr_p3}+x_{sr_ev} \]
\[mw[6]=(x_{da_a3}*mi.2.da_time+x_{da_md}*mi.3.da_time+x_{da_p3}*mi.4.da_time+x_{da_ev}*mi.5.da_time+x_{sr_a3}*(mi.2.s2_time+mi.2.s3_time)*0.5+x_{sr_md}*mi.3.da_time+x_{sr_p3}*(mi.4.s2_time+mi.4.s3_time)*0.5+x_{sr_ev}*mi.5.da_time)/60.0 \]
\[mw[7] = x_{da_a3} \times m_{i.2} \times da_{dist} + x_{da_md} \times m_{i.3} \times da_{dist} + x_{da_p3} \times m_{i.4} \times da_{dist} + x_{da_ev} \times m_{i.5} \times da_{dist} + x_{sr_a3} \times (m_{i.2} \times s_{2_dist} + m_{i.2} \times s_{3_dist}) \times 0.5 + x_{sr_md} \times m_{i.3} \times da_{dist} + x_{sr_p3} \times (m_{i.4} \times s_{2_dist} + m_{i.4} \times s_{3_dist}) \times 0.5 + x_{sr_ev} \times m_{i.5} \times da_{dist}\]

\[mw[8] = x_{da_a3} \times m_{i.2} \times da_{cdist} + x_{da_md} \times m_{i.3} \times da_{cdist} + x_{da_p3} \times m_{i.4} \times da_{cdist} + x_{da_ev} \times m_{i.5} \times da_{cdist} + x_{sr_a3} \times (m_{i.2} \times s_{2_cdist} + m_{i.2} \times s_{3_cdist}) \times 0.5 + x_{sr_md} \times m_{i.3} \times da_{cdist} + x_{sr_p3} \times (m_{i.4} \times s_{2_cdist} + m_{i.4} \times s_{3_cdist}) \times 0.5 + x_{sr_ev} \times m_{i.5} \times da_{cdist}\]

\[mw[9] = z_{i.2} \times housesp / (1 + z_{i.2} \times housesp + 1.1 \times (z_{i.2} \times emptot_p - z_{i.2} \times empfood_p - z_{i.2} \times empret_p - 0.25 \times z_{i.2} \times empsvc_p))\]; res share of ixxi

\[mw[9] = z_{i.2} \times hh_p\]

\[mw[10] = z_{i.2} \times emptot_p\]

\[mw[11] = z_{i.2} \times empfoo_p\]

\[mw[12] = z_{i.2} \times empret_p\]

\[mw[13] = z_{i.2} \times empsvc_p\]

endjloop

endrun

run pgm=matrix

filei mati[1]=trips.cv.mat

mati[2]="tempskh07.mat"

mati[3]="tempskmd5.mat"

mati[4]="tempskh16.mat"

mati[5]="tempskev2.mat"

FILEO MATO=cv_temp.mat, MO=1-4

; jloop

;
mw[1]=mi.2.da_dist
mw[2]=mi.3.da_dist
mw[3]=mi.4.da_dist
mw[4]=mi.5.da_dist
mw[5]=mi.2.da_time/60.0
mw[6]=mi.3.da_time/60.0
mw[7]=mi.4.da_time/60.0
mw[8]=mi.5.da_time/60.0
mw[9]=mi.2.da_cdist
mw[10]=mi.3.da_cdist
mw[12]=mi.5.da_cdist
mw[13]=mi.1.cv2x
mw[14]=mi.1.cv3x

; A3
; calcs 1 and 2=c2vmt,c3vmt; 3 and 4=c2vht, c3vht; 5 and 6 = c2cvmt, c3cvmt

endjloop;

fileo reco[1]=cveh_taz.dbf,
fields=i,c2_vt_i,c3_vt_i,c2_vht_i,c3_vht_i,c2_vmt_i,c3_vmt_i,c2_cvmt_i,c3_cvmt_i
ro.i=i
c2_vt_i=rowsum(13)
c3_vt_i=rowsum(14)
c2_vht_i=rowsum(15)
c3_vht_i=rowsum(16)
c2_vmt_i=rowsum(17)
c3_vmt_i=rowsum(18)
c2_cvmt_i=rowsum(19)
c3_cvmt_i=rowsum(20)
write reco=1;
endrun;

;run pgm=matrix
;filei mati[1]=temp.mat
;mw[1]=mi.1.1
;mw[2]=mi.1.2
;mw[3]=mi.1.3
;mw[4]=mi.1.4
run pgm=matrix msg='compile ix+xi person and vehicle trips, miles, c-miles'
; compile ix+xi (basically, any trip from the external matrix for regional indicators
; Input files:
filei mati[1]="ixxi_temp.mat"

; also output a rowsum file in dbf
jloop
 mw[1]=mi.1.x_vt
 mw[2]=mi.1.x_vht
 mw[3]=mi.1.x_vmt
 mw[4]=mi.1.x_cvmt
 mw[5]=mi.1.x_vt.t
 mw[6]=mi.1.x_vht.t
 mw[7]=mi.1.x_vmt.t
 mw[8]=mi.1.x_cvmt.t
 mw[9]=mi.1.hhs
 mw[10]=mi.1.emptot
 mw[12]=mi.1.ret
 mw[13]=mi.1.svc
;
endjloop
;
fileo reco[1]=ixxi_taz.dbf,
fields=i,ix_vt_i,ix_vt_j,ix_vht_i,ix_vht_j,ix_vmt_i,ix_vmt_j,ix_cvmt_i,ix_cvmt_j,hhs,emptot,food,ret,svc
ro.i=i

ix_vt_i=rowsum(1)
ix_vt_j=rowsum(5)
ix_vht_i=rowsum(2)
ix_vht_j=rowsum(6)
ix_vmt_i=rowsum(3)
ix_vmt_j=rowsum(7)
ix_cvmt_i=rowsum(4)
ix_cvmt_j=rowsum(8)
hhs=rowave(9)
emptot=rowave(10)
food=rowave(11)
ret=rowave(12)
svc=rowave(13)
write reco=1
;
endrun
